
• Screened Poisson equation:
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• The minimizer of the energy #
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• Transformation from signed distance 6$ '  to heat:
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• Our heat loss:

8)*+, =
1
2:7
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• Our advantages:
1) As 1/! → 0, the minimizer linearly converges to the distance to Γ, 

where 6$ ' = 0 and ℎ ' = 1.
2) 8)*+, is an upper bound of surface area estimator.
3) 8)*+, has spatial and temporal stability. 

• Losses based on input point cloud distances fail near surfaces.

• Area losses used to remove redundant boundaries are often ineffective 
and always distort results.

• Eikonal loss makes SDF optimization unstable.

HotSpot: Signed Distance Function Optimization with an Asymptotically Sufficient Condition
Zimo Wang*, Cheng Wang*, Taiki Yoshino, Sirui Tao, Ziyang Fu, Tzu-Mao Li (* denotes equal contribution)

BACKGROUND
Given point cloud Γ-, train a neural network 6$ '  to represent 

the signed distance to the reconstructed surface Γ ⊃ Γ-.
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MOTIVATION
An exp-log transformation links 
heat simulation (via the screened 
Poisson equation) and distance 
reconstruction, addressing all 
four challenges.
When ! → ∞ , heat simulation 
provides a sufficient condition.
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(half optimization iterations)

We remove extra boundaries without the area loss. 

We offer better surface reconstruction and level sets.
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We achieve high accuracy in distance queries.

Figure 9. Visual results of DiGS [3], StEik [4], and HOTSPOT on ShapeNet [55]. Previous methods generate extra boundaries and fail to
escape local optima, while our method successfully reconstructs the correct topology.

IoU → dC ↑ dH ↑ RMSE ↑ MAE ↑ SMAPE ↑ RMSE0.1 MAE0.1 SMAPE0.1

SAL [2] 0.7400 0.0074 0.0851 0.0251 0.0142 0.1344 0.0245 0.0182 0.6848
SIREN w/o n [34] 0.4874 0.0051 0.0558 0.5009 0.4261 1.2694 0.0513 0.0382 0.8858
DiGS [3] 0.9636 0.0031 0.0435 0.1194 0.0725 0.2140 0.0152 0.0081 0.1760
StEik [4] 0.9641 0.0032 0.0368 0.0387 0.0248 0.0931 0.0147 0.0081 0.1770
Ours 0.9796 0.0029 0.0250 0.0281 0.0176 0.0540 0.0094 0.0047 0.1206

Table 3. Surface reconstruction metrics on ShapeNet [55], where dC and dH stand for the Chamfer and Hausdorff distances, RMSE, MAE,
and SMAPE are distance field metrics, and RMSE0.1, MAE0.1, and SMAPE0.1 are the same distance field metrics but only for points
within distance 0.1 of the surface. See the supplementary material for detailed results with more baselines.

IoU → dC ↑ dH ↑ RMSE ↑ MAE ↑ SMAPE ↑ RMSE0.1 MAE0.1 SMAPE0.1

SAL 0.7400 0.0074 0.0851 0.0251 0.0142 0.1344 0.0245 0.0182 0.6848
SIREN w/o n 0.4874 0.0051 0.0558 0.5009 0.4261 1.2694 0.0513 0.0382 0.8858
DiGS 0.9636 0.0031 0.0435 0.1194 0.0725 0.2140 0.0152 0.0081 0.1760
StEik 0.9641 0.0032 0.0368 0.0387 0.0248 0.0931 0.0147 0.0081 0.1770
Ours 0.9796 0.0029 0.0250 0.0281 0.0176 0.0540 0.0094 0.0047 0.1206

Table 4. Surface reconstruction metrics on ShapeNet [55], where dC and dH stand for the Chamfer and Hausdorff distances, RMSE, MAE,
and SMAPE are distance field metrics, and RMSE0.1, MAE0.1, and SMAPE0.1 are the same distance field metrics but only for points
within distance 0.1 of the surface. See the supplementary material for detailed results with more baselines.

Structure 5 ↓ 128 5 ↓ 256 8 ↓ 128 8 ↓ 256

StEik [4] 5.65s 10.62s 8.78s 17.00s
Ours 4.49s 8.43s 6.79s 12.86s

Table 5. Runtime for 100 iterations with different network sizes.

theless, our loss still pushes u away from 0, preventing un-
wanted surfaces where ω|u| should be large. We compen-
sate by combining eikonal loss with heat losses. When ω|u|
is large, the eikonal loss becomes dominant. Our ω sched-
uler also effectively shapes the distant regions. Spatially-
adaptive parameters may also improve the results.
Necessity of firm boundary condition. The heat diffu-
sion of the screened Poisson equation is based on a well-
established boundary condition. We enforce the bound-
ary condition through the boundary loss over discrete
points, with neural networks interpolating through spectral
bias [58]. When the input points are sparse and the absorp-
tion coefficient ω is high, an overly strong heat loss (wb be-
ing too small) can tear the boundary, causing the signed dis-
tance to collapse into an unsigned one like Fig. 6. Thus, our
theory highlights the importance of a high boundary weight

wb, while absorption ω is adjusted to match the input point
density or by scaling the point cloud itself. Our experiments
show that proper parameter setting and rescaling prevent the
collapse. Future research is required for very sparse bound-
aries, and applications to inverse rendering.

7. Conclusion
We propose a new model for neural signed distance func-
tion optimization based on the screened Poisson equation.
We analyze our loss theoretically and show that it is an
asymptotically sufficient condition to the true distance, is
stable both to a small perturbation and in the temporal dy-
namics, and penalizes large surface area. Our experiments
show that we reconstruct both better surfaces and better dis-
tance approximations compared to many existing methods,
especially on complex and high-genus shapes.
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TASK 

We are faster to train.

CHALLENGES
• Losses from SDF necessary conditions are not sufficient constraints 

and cannot exclude non-SDF solutions.

Structure 5 → 128 5 → 256 8 → 128 8 → 256

StEik 56.5 ms/iter 106.2 ms/iter 87.8 ms/iter 170.0 ms/iter
Ours 44.9 ms/iter 84.3 ms/iter 67.9 ms/iter 128.6 ms/iter

Table 5. Runtime for 100 iterations with different network sizes.

Acknowledgements. This work was supported in part by
NSF grants 2127544, 2238839, 2100237, 2120019, and
gifts from Adobe and Google. Additionally, we would like
to thank Bing Xu, Zilu Li, Yash Belhe, Ishit Mehta, and
Jianan Xiao for their suggestions, discussions, proofread-
ing, and providing reference materials.

References
[1] Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi.

A level set theory for neural implicit evolution under explicit
flows. In ECCV, pages 711–729, 2022. 1, 2, 6, 7, 8, 10

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-
ing of shapes from raw data. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
2565–2574, 2020. 1, 2, 6, 7, 8, 3, 5

[3] Yizhak Ben-Shabat, Chamin Hewa Koneputugodage, and
Stephen Gould. DiGS: Divergence guided shape implicit neu-
ral representation for unoriented point clouds. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 19323–19332, 2022. 1, 2,
3, 6, 7, 8, 5

[4] Huizong Yang, Yuxin Sun, Ganesh Sundaramoorthi, and An-
thony Yezzi. StEik: stabilizing the optimization of neu-
ral signed distance functions and finer shape representation.
arXiv preprint arXiv:2305.18414, 2023. 1, 2, 3, 5, 6, 7, 8
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Eikonal condition
Zero gradient divergence
Singular Hessian matrix
…

⇔𝑚𝑖𝑛 heat loss
𝜆 → ∞


